DC Power Distribution Panel
PN 8677 6 Position

Panel Specifications
Material: 0.125" 5052-H32 Aluminum Alloy
Primary Finish: Chemical Treatment per Mil Spec C-5541C
Final Panel Finish: Graphite color 2 part textured Polyurethane
Circuit Breakers: 15 Ampere AC/DC magnetic
80V DC/250V AC Maximum
Amperage Rating: Panel Buses are sized for 100 Amperes of continuous current.
Voltage Rating: Panels are rated for 12 or 24 volt DC distribution.

The Purpose of a Panel
There are five purposes of a marine electrical panel:
• Power distribution
• Circuit (wire) protection
• Circuit ON/OFF switching
• Metering of voltage and amperage (In panels with meters)
• Condition Indication (circuit energized)

Applicable Standards
• United States Coast Guard Code of Federal Regulations 33, Part 183, Subpart I, Electrical Systems on Boats.

Mounting Centers: 9-21/32 x 2-29/32 245.60 x 74.20
Overall Dimensions: 10-1/2 x 3-3/4 266.70 x 95.30
Panel Depth: 2-1/2 63.50

Installation

1. Disconnect all AC and DC power
Before starting, disconnect the main positive cable from all batteries to eliminate the possibility of a short circuit while installing the distribution panel. Also disconnect the AC shore power cord from the boat to eliminate the possibility of electrocution from AC wiring in the proximity of the DC distribution panel.

2. Apply Voltage Label
All panel components are sized for 12 or 24 Volt systems. Use the labels provided to permanently identify the system voltage and its type (DC) as required by ABYC. Apply the appropriate voltage label to the recessed area on the front of the panel.

3. Select mounting location and cut opening
Select a mounting location which is protected from water on the panel front and back and is not in an area where flammable vapors from propane, gasoline or lead acid batteries accumulate. The circuit breakers used in marine electrical panels are not ignition proof and may ignite such vapors.
Using the panel template provided, make a cut out in the mounting surface where the distribution panel is to be mounted. Do not fasten the panel to the mounting surface.

4. Install positive feed wire and negative return
Determine the positive feed (red) and negative return (black or yellow) wire size by calculating the total amperage of the circuits that will be routed through the panel. Blue Sea Systems' electrical panels are rated at 100 amp total capacity. The positive feed wire must be sized for 3% voltage drop at the 100 amp panel rating or the maximum amperage that will be routed through the panel in any particular installation, whichever is less. It is recommended that the positive feed wire be sized for the full panel capacity, which, in most cases, will require at least 4 AWG wire, assuming a 10 foot wire run between the panel and the batteries in 12 volt systems. Refer to the Wire Sizing Chart for other situations. Remember that the length of the circuit is the total of the positive wire from the power source and the negative wire back to the DC Negative Bus. Be certain that there is a fuse or circuit breaker of the correct size protecting the positive feed wire.

6. Install branch circuit wires
Determine the proper wire size for each branch circuit using the guidelines in step 4. Verify that the standard 15 amp circuit breakers installed in the panel are large enough for each branch circuit. Remove and replace with a higher amperage any that are undersized.
Connect the positive (red) branch circuit wires to the load terminals of each circuit breaker.
Connect each negative (black) branch circuit wire to the DC Negative Bus. DO NOT CONFUSE THE DC NEGATIVE BUS WITH THE DC GROUNDING BUS.

7. Optional - install grounding system wire
The grounding wire (bare, green or green with yellow stripe and normally non-current carrying) should not be confused with the negative ground wire (black or yellow and normally current carrying).
In Boatowner’s Illustrated Handbook of Wiring, Charlie Wing identifies three purposes of DC Grounding:
1. Holding conductive housings of low voltage (under 50 volts) DC devices at ground potential by providing a low resistance return path for currents accidentally coming into contact with the device cases.
2. Providing a low resistance return path for electrical current, preventing stray currents that may cause corrosion.
3. Grounding metal electrical cases to prevent emission from inside or absorption from outside of radio frequency noise (RFI)
ABYC requires that grounding wires be sized no smaller than one wire size under that required for current carrying conductors supplying the device to which the grounding wire is connected.
A full treatment of this subject is not possible within the scope of these instructions and there is controversy surrounding the general subject of DC bonding, of which DC grounding is a component. It is suggested that installers not familiar with this subject consult one of the reference books listed elsewhere in these instructions.

8. Installation of Backlight System

Connect the yellow negative wire to the panel negative bus.

To activate the label lights by the boat's battery switch, connect the red positive wire to the DC panel positive bus.

To activate the label lights by an independent switch or breaker, connect the red positive wire to the load side of the switch or breaker.

8. Apply branch circuit labels and mount panel

Apply a label for each of the branch circuits from the 30 basic labels provided. If the appropriate label is not included, the Extended Label Set of 120 labels may be ordered from your marine supplier (PN 8039). Individual labels are also available from Blue Sea Systems for specific applications. Refer to the label order form for a complete listing of individual labels.

Fasten the panel to the mounting surface using the panel mounting screws supplied with the panel.

9. Testing

Reconnect the main positive cable to the battery terminals and turn the main switch on to supply power to the panel. Turn on all branch circuits and test the voltage at the panel. Compare this voltage to the battery terminal voltage to determine that the voltage drop is within 3%. With all branch circuits still on, test the voltage at one device on each circuit to determine that there is a 3% or 10% drop as is appropriate.

Note

This Blue Sea Systems electrical distribution panel is furnished with 15 amp circuit breakers. This rating was selected to minimize the need for removing the panel's circuit breakers and reinstalling different size circuit breakers. As shown in the Wire Sizing Chart included with these instructions, even 16 AWG wire, which is the minimum wire size recommended by ABYC, has an allowable amperage greater than 20 amperes. Additionally, it would be rare to have more than 15 amperes of current flowing in any one circuit. Therefore, 15 ampere circuit breakers will satisfy the vast majority of marine circuit protection situations.

Wire Sizing Chart

1. Calculate the maximum sustained amperage of the circuit. Measure the length of the circuit from the power source to the load and back.

2. Does the circuit runs in an engine space or non engine space.

3. Calculate Famps (Feet x amps). Multiply circuit length by max. current.

4. Base the wire on either the 3% or 10% voltage drop. In general, items which affect the safe operation of the boat and its passengers (running lights, bilge blowers, electronics) use 3%; all other loads use 10%.

5. Starting in the column which has the right voltage and voltage drop, run down the list until arriving at a value which is greater than the calculated Famps. Move left to the Ampacity column to verify that the total amperage of the circuit does not exceed the maximum allowable amperage of the wire size for that row. If it does, move down until the wire ampacity exceeds the circuit amperage. Finally, move left to the wire size column to select the wire size.

Example

a. A 12 volt system at 10% drop with a 40' circuit x 45 amps = 1800 Famps. A wire size of 8 is required.

<table>
<thead>
<tr>
<th>Wire Size</th>
<th>Wire Ampacity non-engine</th>
<th>Wire Ampacity engine</th>
<th>Wire Voltage Drop</th>
<th>12 Famps</th>
<th>10% Famps</th>
<th>3% Famps</th>
<th>10% Famps</th>
<th>3% Famps</th>
<th>10% Famps</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>25.0</td>
<td>21.3</td>
<td>28.6</td>
<td>173</td>
<td>576</td>
<td>230</td>
<td>768</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>35.0</td>
<td>29.8</td>
<td>34.5</td>
<td>156</td>
<td>518</td>
<td>209</td>
<td>695</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>45.0</td>
<td>36.3</td>
<td>41.9</td>
<td>219</td>
<td>673</td>
<td>258</td>
<td>855</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>50.0</td>
<td>41.0</td>
<td>48.2</td>
<td>246</td>
<td>731</td>
<td>284</td>
<td>957</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>60.0</td>
<td>48.0</td>
<td>55.8</td>
<td>283</td>
<td>851</td>
<td>317</td>
<td>1051</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>80.0</td>
<td>60.6</td>
<td>69.7</td>
<td>353</td>
<td>1062</td>
<td>397</td>
<td>1298</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>100.0</td>
<td>80.0</td>
<td>90.0</td>
<td>447</td>
<td>1341</td>
<td>497</td>
<td>1567</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>120.0</td>
<td>100.0</td>
<td>111.0</td>
<td>569</td>
<td>1713</td>
<td>601</td>
<td>1975</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>140.0</td>
<td>120.0</td>
<td>132.0</td>
<td>691</td>
<td>2085</td>
<td>704</td>
<td>2331</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>150.0</td>
<td>150.0</td>
<td>153.0</td>
<td>813</td>
<td>2457</td>
<td>807</td>
<td>2593</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>160.0</td>
<td>160.0</td>
<td>174.0</td>
<td>935</td>
<td>2829</td>
<td>909</td>
<td>2815</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.125</td>
<td>180.0</td>
<td>180.0</td>
<td>195.0</td>
<td>1057</td>
<td>3191</td>
<td>1011</td>
<td>3077</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: For wire with 100°C insulation rating and AWG wire sizes. Chart courtesy of the West Advisor.

Wiring Diagram

DC Power Distribution Panel

PN 8677