AC Rotary Switch Panel
2 Positions + OFF, 3 Pole
PN 8363

Features
- Switches 2 - 120/240 V AC Sources
- Compact solution when circuit protection is provided elsewhere
- Allows connecting one of two different AC sources to one circuit
- Heavy duty industrial rated switches
- Intuitive function - One handed operation
- Green power available LED indicators
- Red reverse polarity LED indicators
- UL listed switches

Panel Specifications
- Voltage Rating: Panels are rated for 120 volts AC
- Amperage Rating: 65 amp maximum service
- Panel Material: 0.125" 5052-H32 Aluminum Alloy
- Primary Finish: Chemical Treatment per Mil Spec C-5541
- Final Panel Finish: Graphite color 2 part textured Polyurethane
- Overall Dimensions: 5-1/4 x 3-3/4 133.35 x 95.25
- Mounting Centers: 4-7/16 x 2-15/16 112.71 x 74.61
- Mounting Depth: 3-1/4 x 3-1/4 79 x 79
- Terminal Recommended Torque: 40 lb-in.

Wire sizing chart

<table>
<thead>
<tr>
<th>Wire Size (AWG)</th>
<th>Outside Engine Spaces</th>
<th>Inside Engine Spaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>25.0</td>
<td>21.3</td>
</tr>
<tr>
<td>14</td>
<td>35.0</td>
<td>29.6</td>
</tr>
<tr>
<td>12</td>
<td>45.0</td>
<td>38.3</td>
</tr>
<tr>
<td>10</td>
<td>60.0</td>
<td>51.0</td>
</tr>
<tr>
<td>8</td>
<td>80.0</td>
<td>68.0</td>
</tr>
<tr>
<td>6</td>
<td>120.0</td>
<td>102.0</td>
</tr>
<tr>
<td>4</td>
<td>160.0</td>
<td>136.0</td>
</tr>
<tr>
<td>2</td>
<td>210.0</td>
<td>178.5</td>
</tr>
</tbody>
</table>

Note: This chart assumes wire with 105°C insulation rating and no more than 2 conductors are bundled. Not suitable for sizing flexible shore power cords.

Installation

1. Disconnect all AC and DC power
 Disconnect all AC power originating on or off the vessel. This includes inverters, generators, shore power attachments and any other device capable of supplying AC power to the ship’s circuits.

2. Select mounting location and cut opening
 Select a mounting location which is protected from water on the front and back of the switch and is not in an area where flammable vapors from propane, gas or lead acid batteries accumulate. AC rotary switches are not ignition protected and may ignite such vapors.

3. Install source 1, source 2 and output wires
 Install the feed wires from AC Shore Power and AC Generator. Install the output wires. Refer to the wire sizing chart to select the minimum wire size. Connect wires as shown in the illustration. To avoid excess wire temperatures when cooling may be limited, we recommend using at least 12 gauge wire for 30A and 8 gauge wire for 50A.

 Do not confuse the neutral current carrying wires (sometimes called ground) with the green normally non-current carrying wires (sometimes called grounding). These two wires must be connected only at the source of power, nowhere else.

 A double pole circuit breaker must be installed within 10 feet of the shore power inlet, ahead of this switch. The measurement is made along the conductors.

 The switch provides switching, but does not provide circuit protection. It is not a substitute for a main circuit breaker.

 Wire sizing chart

 Use the wire sizing chart below to determine the minimum branch and feed circuit wire sizes.

4. Testing Connections
 It is very important that the wiring be connected according to the diagram. The line and neutral from each source must be paired together and not connected such that the switch selects line from one source and neutral from another. Verify the connections and see that each connection is securely tightened, including the terminals for the jumpers installed on the switch where no wires are attached.

 It is possible to verify the connections using an ohmmeter before power is applied. These procedures take a little time, but are recommended, especially if some elements of a previous installation might not have been properly labeled or followed the expected color codes.
Installation (continued)

✓ Test Shore Connection to Switch
Disconnect the shore power cord from the shore power source and bring the shore plug aboard to a point close to the switch panel. Connect the other end of the shore cord to the boat’s power inlet. Turn ON the shore power circuit breaker between the inlet and the selector switch. Set the selector switch to OFF.

a. Use an ohmmeter to check for continuity from the shore ground plug to the green wire at the electrical panel.
b. Check for continuity from the power cord plug neutral pin to the neutral wire at the selector switch. [7]
c. Check for continuity between each line pin of the shore plug and the line wire at the selector switch. [3], [11]
d. Check that there is a high resistance between (>1000 Ohms) the neutral conductor and the grounding conductor.
e. Verify that there is a high resistance between (>1000 Ohms) between the shore cord plug neutral pin and each line pin. There may be indicator lamps in the circuit, but no more than that with the selector switch in the off position.

✓ Verify Switch Selects Shore Input
With the shore cord still disconnected from the shore and available onboard, and the generator set not operating, set the load circuit breakers to off, so there is no load at the output side of the selector switch.

a. Verify that there is a high resistance between each line and neutral of the load side terminals of the selector switch. There may be indicator lamps still attached, so it may not read open circuit. [2] to [6], [6] to [10]
b. Set the selector switch to SHORE. The ohmmeter should still indicate a high resistance, for the same tests.
c. Short each line pin to the neutral pin of the shore cord and verify that each line and neutral at the load side of the selector show a low resistance when these are shorted and a high resistance when they are not.

✓ Verify the Generator Wiring
Turn the generator circuit breaker to OFF and set the selector switch to the generator position. All load circuit breakers should still be off. Leave the shore input circuit breaker in the on position.

a. Verify that there is a high resistance (>1000 Ohms) from each line to neutral. [2] to [6], [6] to [10]
b. Verify that there is a low resistance from the neutral to ground at the load connections. [6] to [ground]
c. With the generator still not running, close the generator circuit breaker at the generator. Verify that there is a now a low resistance from each line to neutral where the generator windings are now connected across the circuit.
d. Verify that there is still a high resistance from neutral to ground and neutral to each line at the shore power plug.

✓ Set the Selector switch to OFF, turn the shore power breaker to OFF, and leave the load panel circuit breakers in the OFF position.

Set your multimeter to volts.

5. Apply circuit labels and mount panel
Apply a label for the circuit form the 10 basic labels provided. If the appropriate label is not included individual labels are available form Blue Sea Systems for specific applications. Refer to the label order form included with the panel for a complete listing of individual labels.

Fasten the panel to the mounting surface using the panel mounting screws supplied with the panel.

6. Testing Performance
✓ Test Shore Power
Connect the shore power cable to the shore power source. Turn on the shore source to make power available to the boat.

a. Turn the selector switch to SHORE. No Reverse Polarity lights should be lit, and power available should be indicated. If any red Reverse Polarity lights are on, turn off the shore power circuit breaker and disconnect the shore cord at the shore source. Either the hot and neutral or hot and ground wires have been reversed. Starting at the distribution panel, trace the connections as far back as necessary to locate the error.
b. If there are no indications of reverse polarity, check to see that power is available. If the electrical distribution panel has a meter, verify that shore power is available and at the proper voltage. If there is no meter, turn on the load circuit breaker for an AC circuit powering a convenience outlet and use a voltmeter to verify that power is available from line to neutral at the plug. Verify that there is no voltage between ground and neutral.

✓ Test Generator System
Turn the circuit breaker at the shore source to OFF. Set the selector switch to OFF. The shore power available lights should all be off. Start the generator and turn the generator breaker to ON.

a. The power available light for the generator output should light. The reverse polarity light should be off.
b. There should be no power available indication at the shore power circuit breaker.
c. Set the selector switch to GENERATOR. Power should be available at the power distribution panel. If the electrical distribution panel has a meter, verify that power is available and at the proper voltage.
d. There should be no power available lights indicating at the shore circuit breaker, or the shore indicator of this panel.

The Purpose of the AC Main Source Selector Panel
Alternating Current (AC) power changes polarity 60 times per second in the US, Canada and Latin America and 50 times per second in Europe. This is the frequency of the power and is referred to as Hertz (or the now outdated term “cycle”). Because of this alternating nature of AC power, two live sources of AC power, such as shore power and inverter power, or shore power and a generator, cannot be electrically connected. The AC Main Source Selector panel is designed to connect two sources of AC power to a common circuit while preventing both sources from being connected to the circuit simultaneously.

Related Products from Blue Sea Systems
- High Amperage Fuses and Circuit Breakers for positive feed wires
- High Amperage Battery Switches
- Terminal Blocks and Common Bus Connectors
- AC Distribution Panels
- DC Distribution Panels
- AC and DC Digital and Analog Voltmeters and Ammeters

Useful Reference Books
DOUBLE OR TRIPLE POLE CIRCUIT BREAKER REQUIRED WITHIN TEN FEET OF SHORE INLET BETWEEN AC SOURCE SELECTOR SWITCH AND SHORE POWER

Wiring Diagram
AC Source Selector Panel
PN 8363 Shown

Panel Template
AC Source Selector Panel
PN 8363