AC Rotary Switch Panel
3 Positions + OFF, 3 Pole
PN 8361

Features
- Switches 3 - 120/240 V AC Sources
- Compact solution when circuit protection is provided elsewhere
- Allows connecting one of three different AC sources to one circuit
- Heavy duty industrial rated switches
- Intuitive function - One handed operation
- Green power available LED indicators
- Red reverse polarity LED indicators
- UL listed switches

Specifications
- Voltage Rating: Panels are rated for 120/240 volts AC
- Amperage Rating: 65 amp maximum service
- Panel Material: 0.125" 5052-H32 Aluminum Alloy
- Primary Finish: Chemical Treatment per Mil Spec C-5541
- Final Panel Finish: Graphite color 2 part textured Polyurethane
- Mounting Depth: 5.39 136.9
- Mounting Centers: 4-7/16 x 2-15/16 112.71 x 74.61
- Overall Dimensions: 5-1/4 x 3-3/4 133.35 x 95.25
- Terminal Recommended Torque: 40 lb-in.
- Minimum Wire Size: 12 AWG
- Maximum Wire Size: 6 AWG
- Final Panel Dimensions: 5-1/4 x 3-3/4 133.35 x 95.25
- Mounting Centers: 4-7/16 x 2-15/16 112.71 x 74.61
- Mounting Depth: 5.39 136.9

Installation
1. Disconnect all AC and DC power
 Disconnect all AC power originating on or off the vessel. This includes inverters, generators, shore power attachments and any other device capable of supplying AC power to the ship's circuits.
 Disconnect the main positive DC cable from all batteries to eliminate the possibility of a short circuit and to disable the inverter while installing the switch.

2. Select mounting location and cut opening
 Select a mounting location which is protected from water on the front and back of the switch and is not in an area where flammable vapors from propane, gas or lead acid batteries accumulate. AC rotary switches are not ignition protected and may ignite such vapors.
 Using the panel template provided, make a cut out in the mounting surface where the distribution panel is to be mounted. Do not yet fasten the panel to the mounting surface.

3. Install source 1, source 2, source 3, and output wires
 Install the feed wires from AC Shore Power and AC Generator. Install the output wires. Refer to the wire sizing chart to select the minimum wire size. Connect the black AC hot, white AC neutral and green AC safety ground as shown in the illustration. To avoid excess wire temperatures when cooling may be limited, we recommend using at least 12 gauge wire for 30A and 8 gauge wire for 50A.
 Do not confuse the neutral current carrying wires (sometimes called ground) with the green normally non-current carrying wires (sometimes called grounding). These two wires must be connected only at the source of power, nowhere else.
 An appropriate circuit breakers must be installed within 10 feet of the shore power inlet, ahead of this switch. The measurement is made along the conductors.

WARNING
- If either the switch front or back is to be exposed to water it must be protected with a waterproof shield.
- The switch must not be installed in explosive environments such as gasoline engine rooms or battery compartments as the switches are not ignition proof.
- The vessel’s shore power cord must be disconnected from shoreside power before installing this electrical switch.
- If an inverter is installed on the vessel its power leads must be disconnected at the battery before the panel installation. Be aware that many inverters have a “sleep mode” in which their voltage potential may not be detectable with measuring equipment.
- If an AC Generator is installed aboard it must be stopped and rendered inoperable before the switch is installed.
- Verify that no other AC or DC source is connected to the vessel’s wiring before the switch is installed.

Guarantee
Any Blue Sea Systems product with which a customer is not satisfied may be returned for a refund or replacement at any time.

Wire sizing chart
Use the wire sizing chart below to determine the minimum branch and feed circuit wire sizes.

<table>
<thead>
<tr>
<th>Wire Size (AWG)</th>
<th>Outside Engine Spaces</th>
<th>Inside Engine Spaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>25.0</td>
<td>21.3</td>
</tr>
<tr>
<td>14</td>
<td>35.0</td>
<td>29.8</td>
</tr>
<tr>
<td>12</td>
<td>45.0</td>
<td>38.3</td>
</tr>
<tr>
<td>10</td>
<td>60.0</td>
<td>51.0</td>
</tr>
<tr>
<td>8</td>
<td>80.0</td>
<td>68.0</td>
</tr>
<tr>
<td>6</td>
<td>120.0</td>
<td>102.0</td>
</tr>
<tr>
<td>4</td>
<td>160.0</td>
<td>136.0</td>
</tr>
<tr>
<td>2</td>
<td>210.0</td>
<td>178.5</td>
</tr>
</tbody>
</table>

Note: This chart assumes wire with 105°C insulation rating and no more than 2 conductors are bundled. Not suitable for sizing flexible shore power cords.

4. Testing Connections
 It is very important that wiring be connected according to the diagram. The hot lines and neutral from each source must be identified and grouped together so that the switch selects all of the lines from the same source and does not accidentally select lines or neutrals from more than one source. Verify the connections and see that each connection is securely tightened, including the terminals for the jumpers installed on the switch where no wires are attached.
 If you are using this switch for other purposes, such as voltage tap selection on a transformer, please review your installation diagram and devise a suitable test plan to verify your connections.
Installation (continued)

It is possible to verify most connections using an ohmmeter before power is applied. These procedures take a little time, but are recommended, especially if some elements of a previous installation might not have been clearly or correctly labeled or follow the expected color codes.

There are many possible sources that may be selected using this switch, and they may be arranged in any order. The following test instructions are generally suitable for shore and generator installations. The third source may be another shore power inlet or an inverter or other specialized source.

✔ Test Shore Connection to Switch
Disconnect the shore power cord from the shore power source and bring the shore plug aboard to a point close the switch panel. Connect the other end of the shore cord to the boat’s power inlet. Turn on the shore power circuit breaker between the inlet and the selector switch. Set the selector switch to OFF.

a. Use an ohmmeter to check for continuity from the shore ground plug to the green wire at the electrical panel.

b. Check for continuity from the power cord plug neutral pin to the white wire for this source at the selector switch.

c. Check for continuity from the power cord plug L1 pin to the L1 connection for this source.

d. Check for continuity from the power cord plug L2 pin then L2 connection for this source. Generally the assignment of L1 and L2 is arbitrary and they may be interchanged.

e. Check that there is a high resistance (> 1000 Ohms) between the neutral conductor and the grounding conductor. There may be indicator lamps in this circuit, but nothing more than that with the switch in the OFF position.

✔ Verify Switch Selects Shore Input
With the shore cord still disconnected from the shore and available onboard, and the generator set still not operating, set the load circuit breakers to OFF, so there is no load at the output side of the selector switch.

a. Verify that there is a high resistance between the line and neutral of the load side terminals of the selector switch. Again, there may be indicator lamps in this circuit but the resistance should be greater than 1000 Ohms if the indicators are LED or small lamps.

b. Set the selector switch to the position corresponding to this shore input. The ohmmeter should still indicate a high resistance.

c. Short the line 1 pin to the neutral pin of the shore plug and verify that the line 1 to neutral at the load side of the selector changes to a low resistance. Short the line 2 pin to the neutral pin of the shore plug and verify that line 2 to neutral connection at the load side of the selector has changed from high to low resistance.

✔ Verify the Generator Wiring
Turn the generator circuit breaker to OFF and set the selector switch to the generator position. All load circuit breakers should still be off. Leave the shore input circuit breaker in the ON position.

a. Verify that there is a high resistance (>1000 Ohms) from each line to neutral.

b. Verify that there is a low resistance from the neutral to ground at the load connections.

c. With the generator still not running, close the generator circuit breaker at the generator. Verify that there is now a low resistance from each line to neutral where the generator windings are now connected across the circuit.

d. Verify that there is still a high resistance from neutral to ground and neutral to each line at the shore power plug.

✔ Test the third source in a similar manner.

✔ Set the Selector switch to OFF, turn the shore power breaker to OFF, and leave the load panel circuit breakers in the OFF position. Complete the mounting of the switch.

5. Apply circuit labels and mount panel
Apply a label for the circuit form the 10 basic labels provided. If the appropriate label is not included individual labels are available form Blue Sea Systems for specific applications. Refer to the label order form included with the panel for a complete listing of individual labels.

Fasten the panel to the mounting surface using the panel mounting screws supplied with the panel.

6. Testing Performance
Set your multimeter to volts.

✔ Test Shore Power
Connect the shore power cable to the shore power source. Turn on the shore source to make power available to the boat.

a. Turn the selector switch to SHORE. No Reverse Polarity lights should be lit, and power available should be indicated. If any red Reverse Polarity lights are on, turn off the shore power circuit breaker and disconnect the shore cord at the shore source. Either the hot and neutral or hot and ground wires have been reversed. Starting at the distribution panel, trace the connections as far back as necessary to locate the error.

b. If there are no indications of reverse polarity, check to see that power is available. If the electrical distribution panel has a meter, verify that shore power is available and at the proper voltage. If there is no meter, turn on the load circuit breaker for an AC circuit powering a convenience outlet and use a voltmeter to verify that power is available from line neutral at the plug. Verify that there is no voltage between ground and neutral.

✔ Test Generator System
Turn the circuit breaker at the shore source to OFF. Set the selector switch to OFF. The shore power available lights should all be off. Start the generator and turn the generator breaker to ON.

a. If there are power available lights for the generator output, they should light.

b. There should be no power available indication at the shore power circuit breaker.

c. Set the selector switch to GENERATOR. Power should be available at the power distribution panel. If the electrical distribution panel has a meter, verify that power is available and at the proper voltage.

d. There should be no power available lights indicating at the shore circuit breaker.

✔ Test the third source in a similar manner.

The Purpose of the AC Main Source Selector Panel
Alternating Current (AC) power changes polarity 60 times per second in the US, Canada and Latin America and 50 times per second in Europe. This is the frequency of the power and is referred to as Hertz (or the now outdated term “cycle”). Because of this alternating nature of AC power, two live sources of AC power, such as shore power and inverter power, or shore power and a generator, cannot be electrically connected. The AC Main Source Selector panel is designed to connect two sources of AC power to a common circuit while preventing both sources from being connected to the circuit simultaneously.

Related Products from Blue Sea Systems
- High Amperage Fuses and Circuit Breakers for positive feed wires
- High Amperage Battery Switches
- Terminal Blocks and Common Bus Connectors
- AC Distribution Panels
- DC Distribution Panels
- AC and DC Digital and Analog Voltmeters and Ammeters

Useful Reference Books
Installation (continued)

Wiring Diagram

AC Rotary Selector Switch

PN 8361

Panel Template

AC Source Selector Panel

PN 8361

This template has been provided to help you in installing your new Blue Sea Systems power distribution panel.

Drill pilot hole as needed for panel mounting screws.

Cut out template and trace onto mounting surface.